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ABSTRACT 

This report is concerned with the development of a surveillance dynamic tasking tool whose 
purpose is to demonstrate benefits in terms of enhanced operational effectiveness through the 
coordinated deployment and control of a suite of surveillance assets. The tmderlying theory is 
developed for mathematically representing surveillance information, and the problem of 
optimising a search operation so as to maximise the information collected stated formally. A 
technique for solving the problem is proposed using evolutionary programming and a 
simplified version of the tool has been implemented so as to control sensors and platforms 
undertaking a simulated search operation in order to demonstrate the feasibility of the 
approach. 
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A Dynamic Asset Tasking Technique for 
Integrated Surveillance Operations 

Executive Summary 

Integrated surveillance is concerned with the integrated management of the 
surveillance assets as well as the integration of the information they collect. Whereas 
benefits would appear prima facie to derive from increased integration in terms of 
planning, coordination and fusion, quantifying them requires a measiu-e for the 
information collected in relation to the information sought. It is necessary to quantify 
the issue not only to assess improvements in surveillance effectiveness arising from 
increased integration, but also to fully exploit the potential for enhanced effectiveness, 
becavise benefits will only accrue if the potential for them is actively exploited. 
Improved commtmications and computational resovirces in support of surveillance 
operatioris will provide the opportunities for enhanced effectiveness, but it wiU be 
better planning and control decisions which realise the erihancements. Therefore, 
quantification is a prereqviisite not only for the assessment of integrated svirveillance 
but also for its fuU exploitation. 

This docimient reports on progress in addressing an integrated siuveiUance issue in 
which sensors and platforms are djmamicaUy retasked during a search operation so as 
to enhance their collective search effectiveness. A surveillance dynamic tasking tool has 
been developed and implemented for the purpose of demor«trating benefits in terms 
of enhanced operational effectiveness through the coordinated deployment and control 
of a suite of surveillance assets. The imderlying theory is developed for mathematically 
representing svurveUlance information, and the problem of optimising a search 
operation so as to maximise the information collected is stated formally. A technique 
for solving the problem is proposed using evolutionary programming and a simplified 
version of the tool has been implemented in order to demonstrate the feasibility of the 
approach. An indication is given as to how the theory may be extended to deal with 
more general surveillance information requirements and competing prioritised 
reqvurements. 

This work represents progress towards improved planning and control for integrated 
sixrveUlance operations, whether civilian or military, as well as improved techniques 
for assessing surveillance effectiveness. It provides a scientific basis for imderstanding 
the quantitative aspects of surveillance issues. It is planned to continue this work for 
more general sets of surveillance information requirements and using more 
sophisticated optimisation techniques. It is also intended to be applied to specific 
surveillance problems such as Coastwatch flight route planning, UAV route 
optimisation and satellite surveillance operations, some of which is already in 
progress. 
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1. Introduction 

The purpose of this work is to demonstrate that deployed surveillance assets (sensors 
and their platforms) can be controlled cooperatively so as to enhance their combined 
effectiveness in collecting surveillance iiiformation. In order to demonstrate this an 
algorithm is proposed which dynamically tasks the surveillance assets based upon the 
information requirement and their performance in satisfying it. This requires 

• A representation of the physical domain and the information collection process 
undertaken by the surveillance assets 

• A formal representation of the surveillance information requirement and a 
measure for how^ effectively it is being achieved 

• Identification of the sensor and platform decision and control variables 
• The dynamic tasking algorithm which monitors past effectiveness and 

optimises future expected effectiveness through judicious choice of values for 
the decision and control variables 

The dynamic tasking algorithm attempts to optimise the overall surveillance 
operational effectiveness resulting from sensor and platform confarol actions specified 
by decision and control variables. These will, in general, be a mbc of discrete and 
continuous variables and are also likely to be constrained. Optimisation is required to 
be performed over a time horizon with the additional difficulty of targets moving 
impredictably. The algorithm must perform in real time and may, in practice, never 
have sufficient time to generate a truly optimal solution. Therefore if the algorithm is 
terminated prematurely it must provide a feasible, albeit sub-optimal, solution (ie an 
'Anytime Algorithm'). Also, obtaining a few good solutions is more desirable tiian 
obtaining a single perfect solution in order that human planners can choose between a 
range of options and consider other factors less amenable to modelling such as risk and 
survivabihty. These reqviirements preclude the use of standard mathematical 
programming techmques and so this work explores the use of biologicaUy-iiispired 
techniques such as evolutionary programming (EP). 

It should be noted that there is a range of timescales over which decisions can be taken 
with regard to the deployment of sensors and their platforms. To distinguish between 
them the following terminology is employed: planning refers to the allocation of 
surveillance resources to a general area during a time period in advance; scheduling 
refers to the advanced specification of the times at which those resoiirces will be 
deployed; tasking is the actual commitment of the resources to be deployed eitiier at the 
scheduled times or at other times; and control refers to the direction in real time of 
sensors and platforms which are on-task. The use of the term dynamic tasking in the 
title refers to the tasking and contiol of previously scheduled assets. This implies that 
the assets to be used have previously been determined as well as the general area and 
times at which they will be deployed. The purpose of the techniques is to determine the 
precise timings and locations to which the assets will be deployed in response to 
information acquired through sensing of actual targets. 



2. Modelling Requirements 

2.1 The Surveillance Information Space 

The Surveillance Information Space {S.I.S.) is defined as the set of all variables relevant to 
a particular Surveillance Information Requirement. This includes the specification of 
the region of interest, the time period of interest and all variables, and tiieir ranges or 
allov^^ed values, for the attributes of the targets of interest, such as total ntimbers of 
targets, their locations, speeds, tracks, types and identities. The actual values assimied 
by these variables will never be precisely known becaiise of tmcertainty arising from 
incomplete coverage, unpredictable target motion and imperfect measiurements. Their 
values will therefore be expected to change over time as the situation evolves and as 
new evidence arises. The purpose of the S.I.S. is to represent the process which leads to 
the satisfaction of the S.I.R., the aim of the present paper being to demonstrate how this 
process can be optimised in some sense. Note that even if a target attribute is not 
explicitly stated in the S.I.R., it may be required for the S.I.S. For example, if the 
requirement is to identify a target, a location estimate will be needed initially to enable 
a suitable asset to be cued to measure this attribute. 

2.2 The Surveillance Information Requirement 

The piupose of svurveillance is to gather information pertinent to an area and time 
period, but not just all or any information. Surveillance assets are a limited resource 
and they must therefore be directed to gather orUy that information which is required. 
The simplest way would be to specify the area and the types of targets within it, or 
targets moving within a particular speed range or within a range of directior\s. This 
reqtiirement would be based upon some estimate of the threat posed by targets 
conforming to this requirement. The problem with this 'all or nothing' approach is that 
information which falls just outside such a requirement specification will be completely 
ignored. So for example, a target just outside the region of interest but moving towards 
it woiild be considered not to satisfy the requirement even though it will at some 
futvure point in time. A target which has been mis-classified may be deemed not to have 
satisfied the requirement whereas it would be better to monitor it until its classification 
can be confirmed. Therefore what is needed is a way of prioritising information 
according to its current or futvue relevance to the hypothesis (eg level of threat) which 
the surveillance operation is attempting to confirm or deny. 

2.3 The Surveillance Asset Decision Space 

Whereas the Surveillance Information Space is composed of dependant variables 
which are a function of the operational situation and sensor performances and whose 
values ultimately conhribute to the satisfaction of the S.I.R., the Surveillance Asset 
Decision Space D is composed of independent control variables and their allowable 
values. The decision variable values are set at discrete instants of time or are controlled 



continuously over time, and are determined so as to best satisfy the S.I.R. (ie achieve 
optimahty) subject to operational, environmental and resource constraints (ie maintain 
feasibility) over a given time horizon. In order to gauge how well a S.I.R. is being met 
and plan to satisfy it optimally in the future, a Measure of Surveillance Effectiveness 
(M.S.E.) is required. As wiU be seen, a M.S.E. differs from most military Measure of 
Effectiveness in needing to be a measure of information, specifically information 
derived from sensors. If there is prior knowledge about the likely existence of targets 
and their location, for example from a normalcy database, then this should taken into 
accoimt when deciding where to deploy surveillance effort since it is obviously better 
to look where targets are expected to be than where they are not. 

3. Dynamic Optimisation of Search Operations 

The surveillance tasking tool in its cvirrent state of implementation deals with the first 
stage of surveillance, namely search, where the objective is to collect as much 
information as possible, consistent with the S.I.R., about the existence of targets within 
a region during a time period, which may subsequently be followed up by additional 
stJrveiUance activities. For the search mode of a surveillance operation the tool must 
automatically accoimt for the need to minimise overlap between sensors, unless 
overlap is required to provide the necessary level of confidence in information 
obtained, and not to search areas which have already been previously searched, unless 
required by the fact tiiat previously undetected targets have drifted into the area from 
elsewhere since last searched. 

It is assumed that the region of interest 51 is divided into cells labelled i=l,...,N. The 
shape of the region is immaterial but the cells can be considered to be squares of 
uniform size. Note the cells are taken to be sufficiently small that there can be no more 
than one target in each cell, or at least the probability of such an occiurence is 
exceedingly small and to aU practical purposes can be ignored. The cell size may be 
related to the pixel size in an image. Each ceU has a probability associated with it of 
containing a single target p" at time epoch n. This probability distribution for the 

existence and location of targets is initialised to the a priori distribution p° at time t=0. 

As sensors sweep, scan and dwell upon cells within 9t, the probabilities for the 
occupation of the cells by targets change depending upon whether detectior^ occur or 
not. If it is assumed for present purposes that sensors are perfect, then a detection at 
epoch n in cell i will set p" -I, whereas a non-detection will set it to 0. By a perfect 

serisor is meant that a detection occurs in a cell if and only if there is a target in that 
cell, assimung that the serisor looks' in that cell. If a cell is not inspected then the 
probability of a target residing within it is assumed not to change. Note that these 
assumptions can be generalised. One can update probabilities based upon imperfect 
sensors using Bayes' Rule and can modify target probability distributioi\s to take 



account of target motion using a Markovian target motion model (eg Gauss-Markov). 
These issues are described in detail in Berry et al [1]. 

A surveillance asset tasking and control algorithm such as that described in [1] and the 
present paper could be useful for actual surveillance planning, tasking and control 
operations, or could be used to task and control surveillance assets within operational 
simulations for the purpose of assessing surveillance effectiveness. A coarser, but more 
efficient, analysis approach for undertaking the latter is the Integrated Surveillance 
Assessment Model described in Berry [2]. 

In order to provide a imified framework for the development and application of a 
tasking tool, the problem is approached from a probabilistic perspective as probability 
theory is able to address aU of the modelling issues referred to above in a theoretically 
consistent fashion. These ideas are developed in the following sections. 

3.1 Maximising information over a physical surveillance information 
state space 

The objective of a search operation is to gather information about the existence, and 
non-existence, of targets within a given area. To gauge how well this objective is being 
satisfied and to satisfy it in the shortest time or with the mirumvun of resources it is 
necessary to quantify it. To this end, a measure for the information derived from the 
sensors undertaking the search operation will be defined, namely entropy. From the 
probabilities for the occupation of single cells comprising 91 a single state space S is 
constructed for the numbers of targets and their locatioris and a probability 
distribution defined over S: 

k N 

Msj^j^ y,} = Pr{target in cells ;,, A'• • ■' A} = 11 Pj,O(^ ~ P'^ 
;=i       1=1 

This is true if it is assumed that all cells are independent in the sense that information 
about the existence of a target in one cell has no effect on the likelihood of targets in 
any other cells. This would not be correct if targets were correlated with each other, for 
example ships comprising a naval fleet, or if the total number of targets were assumed 
knov^m. This is referred to as the local formulation of the target location problem and 
leads to some simplifying features (see Berry et al [1]). It is, in fact, a two dimensional 
Bernoulli distribution which, in the continuous limit, becomes a two dimensional 
Poisson distribution. 

The sum of these probabilities over S is, of course, uruty: 

ZP^{^........} = I 

and the entropy corresponding to a particular probability distribution is: 

h(p) = -    SPr{.,,,^ .}lnPr{^„, J 



where the summation is over all possible states of S and £s is the vector of all 
probabilities over S. Substituting for Pr{5^^ ^^ j^} one obtains, in the case of 

independent ceUs, 

^(^5) = -il^Pj 1" Pj + (1 - ^y)ln(l - ^y)] 

which is simply the sum of the entropies for the individual cells, each regarded as a 
state space in its own right. This expression is readily computed; furthermore, the 
linearity in contributions to total entropy from individual cells means that it is easy to 
specify entropy for sub-regions Si'djli if orUy targets occupying 91' are of interest. 
This expression provides a quantitative measure of surveillance effectiveness. It will be 
seen that using this expression it is also relatively easy to predict the expected entropy 
arising from a search decision. 

As observations of targets are made the cell probabilities are updated using Bayes' rule, 
but not the cells where no observatioris occur, because cells are assimied independent. 
Because targets are likely to move between observations, the probabilities for their 
locations should be changed to reflect this according to appropriate target motion 
models (see Berry et al [1]). 

This probability distribution is a representation of the search S.I.R. and the entropy is a 
measure of how well it has been satisfied in terms of either confirming or denying the 
existence of targets in 91 and their locations. If the objective of a surveillance search 
operation is to make the information about targets and their locations in 91 as 
complete as possible then the value of the entropy must be minimised. If it ever 
achieves the value of zero then the information obtained will be complete and lacking 
in any imcertainty. In practice this wiU never be achieved because of imperfect sensors, 
tmpredictable target motioris and inadequate coverage so the objective must be to 
minimise it as far as is practically possible. Any choice of sensor action d in the decision 
space D must be such as to minimise the expected entropy which will result from the 
action. 

Let p" = Pr{5 e 5 at time epoch n} for an element of S, and p" = {p" j^^ be the vector 

of all such probabilities over S at time epoch n. For a choice of decision de D there is a 
set of measiu:ements or observatior\s M(d) possible, each element me Mid) of which 
has probability P{m,d) of occurring. For each decision deD and consequent 
measurement set w e M {d), the probabilities are updated using Bayes' Rule 

- _L{m\s,d)p^ 

P(m,d) 
where   the   likelihood   function   Lim\s,d)   is   defined   as   the   probabiUty   that 
measurement set me M{d) will occur given that the system is in state se S and 
decision de D is taken. Depending upon how the state space is defined, s could be 
simply the existence of a target within a cell, or a pattern of target distribution within 



91. Note that the probability of a particular measurement set tn occurring can be 
obtained from the Ukelihood function thus 

The entropy of the system following the measurement set m which, in turn, depends 
upon the decision d, is given by 

ssS 

This can be used to predict what the entropy will be in advance of an observation for a 
choice of decision d by regarding the entropy function as a random variable over the 
measurement space M(d). Then its expected value is 

KiP^s I d) = £„,M(rf)Mp's \m,d)=   YjPif^^dMp;, I m,d) 
meM(d) 

If the preferred action d'e Dis such as to minimise the expected entropy at the next 
epoch, then it satisfies 

or, equivalently 

E„^Mid-)hils I ^^d') - min^,o E^MidMP^s I ^^d). 

This analysis has been developed for a completely general state space and set of 
observations. In practice the size of the state space and the set of all possible 
observatioris may be combinatoriaUy large which could render the computation of the 
expected entropy difficult, particxilarly so because the expected entropy would to be 
evaluated for a potentially large number of possible decisions, enabling the optimal 
one to be selected. However, a general expression may be derived for the expected 
entropy which simplifies its evaluation somewhat, and also enables approximations to 
it to be derived systematically. 

Taking the expression for the entropy following an observation 
/i(p's I m,d) = -^p'. In p', 

and substituting for p\ using Bayes' Rule 

, ^Lim\s,d)p^ 

^'        P(m,d)     ' 
the following expression is obtained 

hip's I ^'d) = 'y{p^L(m I s,d)ln L{m | s,d) +L{m | s,d)p^ In pj + In P{tn,d) 
P{m,d)tts 

Substituting this into the expression for the expected entropy 

heip;s\d)=   Y^P{m,d)h{p^,\m,d) 
m€M(d) 

and simplifying, yields 



K{p;s\d)^hip^)-Y,Ps  X  Lim\s,d)lnLim\s,d)+   2;P(m,c?)lnP(m,rf) 
.!6S       meAf(rf) meM(rf) 

where /i(_p^) is the entropy of the system immediately prior to the observations based 

upon the a priori probabilities. Note that this expression relates the expected a posteriori 
entropy to the a priori entropy and therefore expresses the difference between them 
which is to be maximised in order to maximise the improvement in information. 

In the special case of independent cells which is proposed as the state space for the 
search problem, the expected entropy can be computed for each cell independently and 
then summed over all of the cells. The fact that this is possible was pointed out 
previously. 

For cell i there are two possible states s (the cell is either occupied by a target or it is not 
with probabilities p. and 1 - p. respectively) and two possible measurements m (either 

a target is observed or it is not). The likelihood function L(m, d) is therefore 
L(target observed | target exists) = p^ 

L(target not observed | target exists) = 1- p^ 

L(target observed | target does not exist) = pj^ 

L(target not observed | target does not exist) = l-Pfa 

The contribution to the expected entropy for each cell inspected (no Bayesian updates 
occiu- for cells not inspected due to the independence assumption) is therefore 

^e,, = ^, - A[Pd In Pd + (1 - Pjln(l - pj] 

- (1 - Pi){Pfa In Pfa + (1 - P/Jln(l - p^J] 

+ {PdPi + Pfa<X-Pi)\MPaPi + Pfai^-Pi)] 

+ [1 - PrfPi - Pfa (1 - Pi)] ln[l - P,P, - Pj, (1 - Pi)] 

This assumes that information regarding all targets is required everywhere in 91. In 
practice the requirement may be for information about targets within a strict subregion 
9l'c 91 and that sensor actions should therefore be optimised within this subregion. Of 
course information may happen to be obtained about targets outside of 91' but still 
within 91 and which may be relevant to some future surveillance information 
requirement. Let S' consist of the states in S corresponding to targets in 91', that is 
■^;„...,A e '5' if and only if at least one of cells ;,,..., ;^ is in 9^'. Then probabilities for 

occupation of states in S can be conditioned on S' as follows: 

p{s\s^S^)^P^ 
Ps' 

where p,,=  YjPs' 

that is the probabilities are summed over the states in S which contain s'. 



As will be seen in what follows it is possible to define an information requirement 
more precisely than simply all target information relevant to a region or subregion. 

4. Experimental Implementation 

4.1 Principles 

The analysis demonstrates that it is possible to mathematically define an objective 
function which represents the quantity of the informahon obtained about targets 
within a region. Furthermore it is possible, given the imperfections of sensors, to task 
the sensors in advance so to observe at those locations where the expected 
improvement in information is likely to be the greatest. It is also possible, in doing so, 
to take account of the physical constraints placed upon where sensors may observe by 
virtue of the platforms they reside upon. This could, in principle, be applied to the 
forward planning of siuveillance flight routes, for instance, but in the present paper 
interest is corifined to the problem of dynamically reassigning airborne sensors whose 
routes have already been scheduled. 

In formulating this problem meaningfully it is necessary to consider what changes 
would be possible to the tasking of a surveillance asset and what benefits would be 
derived from such changes. If an optimal route has already been scheduled to meet a 
requirement then why would it be necessary to change it? This can only be because the 
assumptions underlying the original plan have lost their vaUdity. This could be 
because of unforseen delays in platform take-off times, deviations in platform speeds 
due to headwinds, imexpected localised environmental conditions affecting sensor 
performances, additional information provided by opportimistic assets such as multi- 
role platforms, and changing information requirements or priorities. Alternatively, the 
original search plan may be sub-optimal and therefore capable of improvement. 

Given that changes may be required to previously planned surveillance flight routes, 
the next consideration is to the choice of times at which such changes should be made 
and how far ahead in time the changes should be planned for, namely the choice of 
planning horizon. It is assumed that changes to routes are implemented by moving the 
next defined waypoint for a platform and that aU remaining future waypoints remain 
unchanged. The amount of the deviation can be constrained. This avoids the problem 
of replanning the entire route and maintaining the constraint that a platform must 
return to an airfield before exhausting its fuel load, which would be computationally 
expensive in real time. This has the effect of constraining a platform not to deviate too 
far from its original planned route. 

It is possible, in principle, then, to generate a well-defined dynamic tasking problem in 
terms of an objective function and a set of constraints which auns to maximise the 
information collected. Its implementation within a simulated surveillance operation 
can be expected to demonstrate benefits in dynamically tasking sensors and platforms. 



However, a suitable optimisation algorithm is required which although it may tiot 
provide truly optimal solutioi\s, is at least capable of yielding good quality solutioT\s in 
real time. 

The above methodology has been appUed to a specific siurveUlance asset tasking 
problem, namely optimising the allocation resources provided by a constellation of 
surveillance satellites for the purpose of tracking surface maritime targets (Berry & 
Fogg [6]). This problem is characterised by complexity in satellite orbit computation 
but relative simplicity in terms of the planning horizon because one only needs to plait 
ahead to the next epoch at which a satellite flies past the region of interest. 

4.2 Practice 

Prior to the development of the above analysis, an experimental tasking tool was 
developed within SSD to gain familiarity with the application of existing 
methodologies used to address this type of problem, and to explore the required 
structiure to enable connectivity to ISAT (Integrated Surveillance Assessment Tool) 
simulations. Algorithm options included Genetic Algorithms, Neural Networks and 
Evolutionary Programming (EP) [3]. The latter technique, the simplest, was chosen for 
this exploratory work. 

Genetic methods store multiple solutions to a problem each solution referred to as 
member of a population. Associated with each member is its fitness, which is simply a 
measure of how well this solution solves the problem at hand. Throughout the search 
for the optimal solution, a 'survival of the fittesf procedure is used, meaning that a 
solution with a higher fitness is chosen over one with a lower fitness. The main 
difference between a Genetic Algorithm and Evolutionary Programming is how new 
solutions (or offspring) are generated from existing members. In (he former, two 
solutions are mated to form a new solution, while in the latter, each member of the 
population generates a offspring by mutation. 

The cvirrent problem consisted of determining how best to task a given set of mobile 
platform-motmted sensors to achieve a specified set of surveillance objectives, over a 
given area, against a specified set of targets. The scenario was based on a version of the 
test case described in [4], but extended to allow more detailed discussion of 
surveillance issues. 

The technique consists simply of starting with an initial tasking of assets in terms of 
prescribed start times and waypoints, and then perttirbing and measuring effectiveness 
at regular intervals of time. After each perturbation, for each sensor system, if there is a 
gain that is greater than a random number in the range [-p,0] the alteration is accepted. 
In this implementation, p was chosen as 5%. Note that allowing negative gain facilitates 
escaping from local minima. 



The EP algorithm was implemented using MATLAB and required a single input 
structvire containing asset state information such as type, positional information, 
wajrpoints, etc. The output is also a single structure containing asset information, but 
only includes future waypoint details. 

In addition, software was developed to enable sensor requirements and achievements 
to be displayed as two-dimensional colour displays. The difference between required 
and achieved surveillance could also be displayed. This software was used to 
demonstrate the potential and ease of use of such aids to tasking siuveillance assets. 
Examples using this process showed consistent improvement towards achieving the 
desired surveillance capability. 

As part of this work JAVA-to-MATLAB middleware was developed to enable 
connectivity between a JACK intelligent software agent and the tasking tool function. 
This allows the future use of such tools in STAGE simulations (STAGE is a high fidelity 
operational simulation model) (see Clark [5]). 

5. Generalisation 

This section has been included in order to indicate how the surveUlance information 
requirement can be generalised beyond simply the existence and location of targets 
within a defined region. 

5.1 Maximising information over a surveillance information space 
posed as a hypothesis or set of hypotheses 

Consider first the representation of the S.I.R. This is assumed to be stated for the 
purpose of supporting or denying a hypothesis which is of significance to the end user, 
such as a threat hypothesis, and therefore embodies the end user's preference for 
information. The hypothesis can either be true or false and the purpose of undertaking 
the siuveiUance operation is to determine which is correct. If a hypothesis of 
significance is true then some appropriate response will be required, but if not then it 
can be safely ignored. The intention is that the decision point at which action is 
required to be taken should be achieved as quickly as possible within the resource 
limitations and surveillance asset capabilities so as to enable the operational response 
to be as effective as possible. 

In practice there are Ukely to be a number of competing requirements for surveillance 
information so these are distinguished between by use of the subscript r. For present 
piirposes it will not be necessary to understand the meaning of such hypotheses, only 
their quantitative relationship to the S.I.S. variables. The simplest way of developing 
this idea is to assume that certain cells being occupied by targets are fully consistent 
with a hypothesis H and remaining cells, whether occupied or not, are of no relevance 
to it. Note that each cell has its own probability of occupation which is unrelated to the 
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probability of occupation of any other cell. This is equivalent to assuming that all 

targets are independent. Then one may assign a random variable /," to each cell i 

w^hich is either 0 if the cell is unoccupied or 1 if it is. Then the probability of it being 

occupied at time epoch n is P"=?T{I"=1). The global S.I.S. is obtained by 
compounding together all of the individual cell states thvis: 

so that if targets are trvdy independent the probability of the occupation of a global 
state can be obtained from the product of the occupation of the appropriate local states. 
The hypothesis H may be considered to be a subset 5^ G 5 so that if a given 

seSfjdS then H is true and if SGS'^CS then H is false, where 5^ u5^ = S of 
covirse. This may be expressed formally as 

?T{H\SES„} = 1 

Vr{H\sES'f,} = 0 
so that at any time epoch n the truth or otherwise of the hypothesis H can be estimated 
thus 

Pr{//}= ^Pr{Hn5"} = ^Pr{i/|5"}Pr{5"}= J^Ms"} 

This is the 'all or nothing' approach referred to previously. The occupation of certain 
states fully supports the hjrpothesis and occupation of any of the rest deny it. 

Other examples of hypotheses H are the existence of a specified niraiber k of targets 
within 91, or the existence of at least one target in 91. Let i/^ be the hypothesis that 

exactly k cells are occupied, and S^ be the space corresponding to any k cells being 
occupied and the remainder imoccupied. Then 

Pr{H,} = XPr{5G5,} 

The probability that at least one cell is occupied is then 

In general, one can compute the entropy of a hypothesis H regarded as a random 
variable to determine how strongly the evidence supports or denies its truth. If it is 
determined that it is likely to be true, or that the risk or ignoring its trutti is 
operationally too high, one can also condition the state of the S.I.S. on its truth thus: 

Pr(£|£W£i 

s' 

This is simply conditioning the probabihty distribution on a subset SH of S. The 
purpose in doing this is to enable future sensor actions to be optimised so as to either 
confirm or deny the truth of a hypothesis regarding the spatial distribution of a 
collection of targets, rather than jtist their existence and individual locations. It should 
be noted that the probability distribution for the target locations conditioned upon the 
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hypothesis H can be updated simply by updating the probabilities for the individual 
cells and then conditioning. 

More generally one would wish to associate a hypothesis more strongly with some 
states than others but not to some at the total exclusion of the rest. Therefore define H 
as a random variable which is either true or false and is correlated with the states of S. 
This is done by creating the joint state space {T,F}®S and then specifying the 
probabilities on it, namely 

Pr{H=T,s} and ?T{H = F,S} 

where 

Y,[MH -T,s} + ?r{H = F,s}] = l 

From these correlations between H and S, which can be based upon historical data, one 
can compute the probability of the hypothesis H being true for a given state 5 6 5 
being assumed to be true: 

Pr|H=r|.l = M^^I^f^  
?T{H=T,s] + Pr{H = F,s) 

Note that this is a generalisation of the above where the conditional probabilities were 
either 0 or 1. From these conditional probabilities one can compute at any time epoch n 
the probability that the hypothesis H is true: 

PT{H =T} = ^Pr{H =T\S"}PT{S"} 

and, as before, condition the probabilities over the state space on the assumption that 
the hypothesis is true: 

' ?T{H=T} 

If it is decided to deploy serisors so as to collect information for the purpose of 
confirming or denying the hj^othesis H then the overall objective must be to minimise 
the entropy associated with H, namely h(H) defined by: 

h(H)^-FT{H =T}\nPT{H =T}-PT{H = F}lnPr{// = F} 
Hence at any time epoch n the actior\s taken shovdd be such as to cause the maximmn 
incremental reduction in the expected entropy following the target motior^s and sensor 
actions: 

max,,^£,(,,[/i(//")-/i(//''^')] 

where D is the decision space, d is an element of D and e(d) is evidence arising from 
sensor decision d. From any given ser\sor decision d the evidence e, ie set of 
measurements, arising from the sensors is stochastic in nature and hence the need for 
an expectation over all possible evidence. For each possible set of values for e the state 
s"^ is computed using Bayesian inference. If it is assumed that the sensors are perfect 
then the expectation and Bayesian inference is rendered redundant becaxise the 
meastu-ing process is deterministic, that is the outcome of a measurement is that a 
target exists within an inspected cell with probability 0 or 1 irrespective of its prior 
probability. Although the problem has been simplified through this assumption a 
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probabilistic approach is still necessary because probabilities stiU lie between 0 and 1 
where sensors have not yet searched and because non-deterministic target motion has 
the effect of spreading out distributions. 

Intuitively one would expect to have sensors search areas not previously searched or at 
least those areas not previously searched which are most relevant to the truth or 
otherwise of the hjrpothesis. If the h)rpothesis embodies the asstimption that there is a 
given nimiber of targets, then confirming that they are not in an easily accessible area 
will help to prove that they are elsewhere in a location which may be less easily 
accessible (referred to as negative information). 

5.1.1 Example - continuous decision variable 

One can see how this idea works if one asstunes a single continuously-valued decision 
variable d which is constrained to make small changes between epochs. This is a 
simplified example chosen for the purpose of demonstration. In reality there wiU be 
several decision variables and some wiU be constrained to asstune discrete values. The 
intention is to maximise h(H")-h(H"^') = h{H{s{d")))-h(H(sid"^'))) over (f^\ 
Performing a Taylor series expansion about d" we have 

hiH{s{d"^'))) = hiHis(d"))) + (d"^' -d") 
,„,dhiH(sid))) 

dd d=d" 

to first order. Hence 

h(H")-h(H"^') 

MHisid))) = -id""-dy 
dd d=d" 

-{d"^' -d'')—[-Vv{H = T}lnPT{H = r} - PT{H = F}?r{H = F}] I 
dd 'd^d" 

(rf""'-d")[(l + lnPr{i/=r}) 

l-Pr{H=r} 

^•^l«=n,(i + ,„p,(H = F))^£ji^^l 

= (rf"^'-J")ln 

dd 

dPv{H=T} 

dd 

dd 

The intention is to maximise this expression w.r.t. d"""^ subject to d""^^ being constrained. 
jn+2 In fact d"*' is constrained to be close to d" in order that this expression be valid as it has 

resulted from the truncation of a Taylor series. 

?r{H=T} 
is 0 when Pr{//=r} = Pr{/7 = F} = 0.5, is positive when Now  In 

l-Pr{H=T} 

Pr{H =T}>0.5 and negative when ?r{H=T}<0.5. This says that if H is more likely 
to be true than false then d should be changed in a direction which improves the 
probability that H is true and, conversely, if H is less likely to be true than false then d 
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should be changed so as to reduce the probability that H is true. If 
1?T{H -T} = ?r{H = F} = 0.5 then the second order term in the Taylor series needs to 
be inspected. 

5.1.2 Example - discrete decision variable 

hi practice Pr{H=T} will depend upon the variables comprising the decision space in 
complex ways so for present purposes it wUl continue to be assumed that the sensors 
are perfect. Suppose that the hypothesis H is the statement that there is at least one 
target in 91 so that if H=F there are no targets in SH. Then 

?v{H=T} = l-Yl{l-p,) 
i 

Note that only one target needs to be detected in order for the hypothesis to be deemed 
true. If the decision d is the label for the next cell to be inspected and orJy one cell can 
be inspected at each epoch, then intuitively the best option is to inspect a cell which has 
the highest probabiUty of containing a target because when p,^^ =1, Pr{//=r} = l.An 

alternative strategy is to attempt to prove that Pr{i/=r} = 0 but this involves 
inspecting every ceU in 91 to ensure that there is no target in it. This will eventuate 
anyway if in the course of trying to prove that PT{H =T} = 1 no cells are found to 
contain targets. 

This can be formalised as follows. Note that when a cell is inspected and no target is 
observed then its probability of occupation becomes zero. Irrespective of the value of 
FT{H =T} before the irispection, the expected consequence of inspecting ceU i=d is 

Pr{// =T}- p.^j, the probability that there is a target in the cell inspected. If a target is 

detected in cell i=d then 
PT{H ^T\ detection in i = d} = I 

but if none is detected then 
?r{H = r I no detection in / = J} = 1 - J|(1 -;?,) 

Since the entropy for hypothesis H is, in general: 
/i(^(5)) = -Pr{//=r}lnPr{//=r}-[l-Pr{//=r}]ln[l-Pr{//=r}], 

the entropy following a detection in cell i=d is: 
h{H I target observed mi = d) = 0 

and the entropy following no detection in cell i-d is: 
h{H\ no target observed in i = d) = 

-n-U(^-p,)]m-Yla-p.)]-ll(i-p,nnii{i-p,) 
i*d i*d i*d i*d 

Hence the expected entropy prior to observing cell i=d is: 
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E{h(H)} = p,^^h{H I detection in J) + (1 - p^^^MH \ no detection in d) 

=-(i-p,w){[i-n(i-A)]in[i-n(i-A)]+n(i-A)inn(i-A)} 

If we put 1- p,^rf = a and ]j[(l- p,) = :?Z' , where the product is over all i, then this 

simplifies to 

E{h{H)} = -a\n{l-7r/a) + 7r\nia/7r-l) 
The decision to be made is the choice of cell d to inspect which will maximise the 
expected entropy. Note that the parameter n: is fixed and independent of the choice of 
cell whereas a does depend upon the choice of ceU through its probability. This could 
be solved by computing the expected entropy for all cells and selecting that cell which 
has the least value. However it will be shown that the expected entropy is a 
monotorucally increasing function of a and hence decreases with increasing p.^^. 

Hence the choice of ceU should be that which has the highest probabihty as originally 
proposed. By differentiating the expression for the expected entropy 

—' '   " =-\nO--7i;/a)>0, 
da 

it is seen that the function is a monotorucally increasing function of a . 

6. Conclusions 

It has been demonsb-ated that it is possible to specify the state of a svirveillance search 
operation probabilistically, evolve the state space probabilities over time according to 
the likely target behaviours, update the state space probabilities in the light of evidence 
from imperfect sensors, and define an objective function of the state space probabilities 
in terms of enhropy which quantitatively expresses the level of completeness and 
accuracy of the target information. By scheduling sensors so as to minimise the 
expected enh-opy it is possible, in principle, to maximise the quality of the information 
obtained. An evolutionary programming technique has been implemented in 
conjimction with a simtilated surveillance scenario to demor\strate the feasibility of the 
approach, albeit for an heuristically defined objective function. The specification of the 
sensor scheduling problem has been extended to indicate how more general 
siuveillance information requirements can be accommodated within this formulation. 
Although the feasibility of the approach has been established, further work is required 
to fully implement it and demonsb-ate its benefits for scenarios of practical interest. 

7. Acknowledgements 

Thanks are due to David Fogg for his encouragement of this work and his suggestion 
that enhropy would be an appropriate measure of surveillance information. The 
exploratory experimental work described in Section 4.2 was carried out by Victor Fok. 

15 



8. References 

[1] Berry, P.E., Fogg, D. and Pontecorvo, C. "GAMBIT: Gauss-Markov and Bayesian 
Inference Technique for Information Uncertainty and Decision-Making in Surveillance 
Simulations", DSTO Research Report in draft 

[2] Berry, P.E. "Integrated Surveillance Model for the Assessment of Surveillance 
Architectures and Operations", DSTO Research Report in draft 

[3] Porto, V.W. "Using Evolutionary Programming to Optimize the Allocation of 
Surveillance Assets", Second Asia-Pacific Conf on Simulated Evolution and Learning, 
Canberra, November 1998, Selected Papers (Publ: Springer, Eds McKay et alia) 

[4] HaU, D & Berry, P E "Merits of Monte Carlo Simulation for the AIR6000 Test 
Scenario", SSD Divisional Discussion Paper, 1999 

[5] Clark, D "Sea-Air Gap Agent" DSTO-TR-1304,2002 

[6] Berry, P E & Fogg, DAB "Optimal Search, Location and Tracking of Surface 
Maritime Targets by a Constellation of Surveillance Satellites", DSTO Research Report 
in. draft 

16 



DISTRIBUTION LIST 

A Dynamic Asset Tasking Technique for Integrated Surveillance Operations 

Paul E. Berry 

AUSTRALIA 

DEFENCE ORGANISATION 

Task sponsor 
Director General Intelligence, Surveillance, Reconnaissance and Electronic 
Warfare 

S&T Program 
Chief Defence Scientist 
FAS Science Policy ^ shared copy 
AS Science Corporate Management 
Director General Science Policy Development ■ 
Counsellor Defence Science, London (Doc Data Sheet only) 
Counsellor Defence Science, Washington (Doc Data Sheet only) 
Scientific Adviser Joint 
Navy Scientific Adviser poc Data Sheet and distribution list orUy) 
Scientific Adviser - Army (Doc Data Sheet and distribution list only) 
Air Force Scientific Adviser 
Director Trials 

Information Sciences Laboratory 

Chief of Intelligence, Surveillance and Recormaissance Division 
Chief of Electroiuc Warfare and Radar Division 
MrP Amey 
Dr A Shaw 
Mr D Fogg 
DrJWhitrow^ 
Dr B Haywood 
Dr D McDonald 
Dr C Pontecorvo 
Dr A Pincombe 
Dr P Hew 
Author(s): Dr PE Berry 

DSTO Library and Archives 
Library Edinburgh 2 copies 
Australian Archives 

Capability Systems Staff 
Director General Maritime Development (Doc Data Sheet only) 
Director General Land Development 



Director General Aerospace Development (Doc Data Sheet only) 

Knowledge Staff 
Director General Command, Control, Communications and Computers (DGC4) 

(Doc Data Sheet only) 

Navy 
SO   (SCIENCE),   COMAUSNAVSURFGRP,   NSW      (Doc   Data   Sheet   and 

distribution list only) 

Army 
ABCA National Standardisation Officer, Land Warfare Development Sector, 

Puckapimyal (4 copies) 
SO (Science), Deployable Joint Force Headquarters (DJFHQ) (L), Enoggera QLD 

(Doc Data Sheet only) 

Intelligence Program 
DGSTA Defence Intelligence Organisation 
Manager, Information Centre, Defence Intelligence Orgaiusation 

Defence Libraries 
Library Manager, DLS-Canberra 
Library Manager, DLS - Sydney West (Doc Data Sheet Orvly) 

UNIVERSITIES AND COLLEGES 
Australian Defence Force Academy 

Library 
Head of Aerospace and Mechanical Engineering 

Serials Section (M Ust), Deakin University Library, Geelong, VIC 
Hargrave Library, Monash University (Doc Data Sheet only) 
Librarian, Flinders University 

OTHER ORGANISATIONS 
National Library of Australia 
NASA (Canberra) 
State Library of South Australia 

OUTSIDE AUSTRALIA 

INTERNATIONAL DEFENCE INFORMATION CENTRES 
US Defense Technical Information Center, 2 copies 
UK Defence Research Information Centre, 2 copies 
Canada Defence Scientific Information Service, 1 copy 
NZ Defence Information Centre, 1 copy 

INFORMATION EXCHANGE AGREEMENT PARTNERS 
Acquisitions Unit, Science Reference and Information Service, UK 
Library - Exchange Desk, National Institute of Standards and Technology, US 



SPARES (5 copies) 

Total number of copies:        47 



Page classification: UNCLASSI FIED 

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 
DOCUMENT CONTROL DATA 

2. TITLE 

A Dynamic Asset Tasking Technique for Integrated Surveillance 
Operations 

4. AUTHOR(S) 

Paul E Berry 

6a. DSTO NUMBER 
DSTO-RR-0246 

8. HLE NUMBER 
E 9505-23-97 

6b. AR NUMBER 
AR-012-480 

9. TASK NUMBER 
JTW 99/005 

13. DOWNGRADING/DELIMITING INSTRUCTIONS 

1. PRIVACY MARKING/CAVEAT (OF DOCUMENT) 

3. SECURITY CLASSIHCATION (FOR UNCLASSIFIED REPORTS 
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT 
CLASSIFICATION) 

Document 
Title 
Abstract 

(U). 
(U) 
(U) 

5. CORPORATE AUTHOR 

Information Sciences Laboratory 
PO Box 1500 
Edinburgh South Australia 5111 Australia 

6c. TYPE OF REPORT 
Research Report 

10. TASK SPONSOR 
JTW 99/005 

11. NO. OF PAGES 
16 

7. DOCUMENT DATE 
September 2002 

12. NO. OF REFERENCES 
6 

14. RELEASE AUTHORITY 

Chief, Intelligence, Surveillance and Reconnaissance 
Division 

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT—'  

Approved for Public Release. 

No Limitations 

17. CITATION IN OTHER DOCUMENTS 
18. DEFTEST DESCRIPTORS " 

Yes 

Surveillance, Defence Planning, Operational Effectiveness, Systems Integration 

19. ABSTRACT " ■— .   

TWs report is concenied with the development of a surveillance dynamic tasking tool whose purpose is to 
demorjstrate benehts in terms of enhanced operational effectiveness through the coordinated deplo)^ent and 
control of a suite of surveillance assets. Hie underlying theory is developed for mathematically representing 
sui^eillance mformation, and the problem of optimising a search operation so as to maximise the iiormation 
collected stated formaUy. A technique for solving the problem is proposed using evolutionary programming 
and a smipMied version of the tool has been implemented so as to control sensors and platf6nr^ undertaking a 
simulated search operation in order to demonstrate the feasibihty of the approach 

Page classification: UNCLASSIFIED 



r 
c 
IF 

c 

m 
T 
O 

C 
(/« 
-t o ■ 
XI 
XI 
I o 

N» 

> 
XI ■ 
o 
ro 
c 
i^ 

c 

IT 

a 
IT 
X 
K 
C 
c 
K 

* 

DEFENCE 
SCIENCES TECHNOLOGY 

INFORMATION SCIENCES LABORATORY 

PO BOX 1500 EDINBURGH SOUTH AUSTRALIA, 5111 

AUSTRALIA, TELEPHONE (08) 8259 5555 


